

How to implement complex full-text search

www.thoughts-on-java.org

The 3 phases of an analyzer
An Analyzer consists of 3 phases, and each of them can perform
multiple steps:

The CharFilter adds, removes or replaces certain characters. That is
often used to normalize special characters like ñ or ß.

The Tokenizer splits the text into multiple words.

The Filter adds, removes or replaces specific tokens.

Define a custom Analyzer
As you can see in the following code snippet, you can define a custom
analyzer with an @AnalyzerDef annotation.

The analyzer definition is global and you can reference it by its name.
So, better make sure to use an expressive name that you can easily
remember. I choose the name textanalyzer in this example because I
define a generic analyzer for text messages. It’s a good fit for most
simple text attributes.

This example doesn’t require any character normalization or any
other form of character filtering. The analyzer, therefore, doesn’t
need any CharFilter.

But it needs a Tokenizer. This one is required by all custom analyzers.
It splits the text into words. In this example, I want to index my
twitter messages. These are simple text messages which can be split

http://www.thoughts-on-java.org/
https://twitter.com/thjanssen123
https://twitter.com/thjanssen123

How to implement complex full-text search

www.thoughts-on-java.org

at whitespaces and punctuations. A Tokenizer created by Lucene’s
StandardTokenizerFactory can split these messages easily into
words.

After that is done, you can apply Filter to the tokens to ignore case
and add stemming.

In this example, I use the LowerCaseFilterFactory that transforms all
tokens to lower case.

The SnowballPorterFilterFactory is more interesting. It creates a
Filter that performs the stemming. As you can see in the code
snippet, the @TokenFilterDef of the SnowballPorterFilterFactory
requires an additional @Parameter annotation that provides the
language that shall be used by the stemming algorithm. Almost all of
my tweets are English so I set it to English.

@AnalyzerDef(

 name = “textanalyzer”,

 tokenizer = @TokenizerDef(factory =

StandardTokenizerFactory.class),

 filters = {

 @TokenFilterDef(

factory = LowerCaseFilterFactory.class),

 @TokenFilterDef(

factory = SnowballPorterFilterFactory.class,

 params = { @Parameter(name = “language”,

value = “English”) })

 }

)

http://www.thoughts-on-java.org/
https://twitter.com/thjanssen123

How to implement complex full-text search

www.thoughts-on-java.org

That’s all you need to do to define the Analyzer. The following
graphic summarizes the effect of the configured Tokenizer and Filter
steps.

http://www.thoughts-on-java.org/

How to implement complex full-text search

www.thoughts-on-java.org

Use a custom Analyzer
You can now reference the @AnalyzerDef by its name in an
@Analyzer annotation to use it for an entity or an entity attribute. In
the following code snippet, I assign the analyzer to the message
attribute of the Tweet entity.

@Indexed

@Entity

public class Tweet {

 @Column

 @Field(analyzer = @Analyzer(definition =

“textanalyzer”))

 private String message;

 ...

}

http://www.thoughts-on-java.org/

How to implement complex full-text search

www.thoughts-on-java.org

Hibernate Search applies the textanalyzer when it indexes the
message attribute. It also applies it transparently when you use an
entity attribute with a defined analyzer in a full-text query. That
makes it easy to use and allows you to change an Analyzer without
adapting your business code. But be careful, when you change an
Analyzer for an existing database. I requires you to reindex your
existing data.

FullTextEntityManager fullTextEm =

Search.getFullTextEntityManager(em);

QueryBuilder tweetQb =

fullTextEm.getSearchFactory().buildQueryBuilder().forEntity(

Tweet.class).get();

Query fullTextQuery =

tweetQb.keyword().onField(Tweet_.message.getName()).mat

ching(searchTerm).createQuery();

List<Tweet> results =

fullTextEm.createFullTextQuery(fullTextQuery,

Tweet.class).getResultList();

http://www.thoughts-on-java.org/

